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ABSTRACT
Evaluation measures are more or less explicitly based on user mod-

els which abstract how users interact with a ranked result list and

how they accumulate utility from it. However, traditional measures

typically come with a hard-coded user model which can be, at best,

parametrized. Moreover, they take a deterministic approach which

leads to assign a precise score to a system run.

In this paper, we take a different angle and, by relying on Markov

chains and random walks, we propose a new family of evaluation

measures which are able to accommodate for different and flexi-

ble user models, allow for simulating the interaction of different

users, and turn the score into a random variable which more richly

describes the performance of a system. We also show how the pro-

posed framework allows for instantiating and better explaining

some state-of-the-art measures, like AP, RBP, DCG, and ERR.
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1 INTRODUCTION
System-oriented evaluation [25] abstracts away many details of

how and why users interact with Information Retrieval (IR) systems

in real settings, in order to provide a very controlled environment

which allows for repeatedly running experiments in a replicable

way. In this context, evaluation measures not only quantify the

effectiveness of IR systems but they also bring back some notion

of user by embedding the so-called user models, which provide

an abridged template of the user behaviour when scanning and

interacting with the ranked result list. Therefore, it becomes crucial
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how much realistic such user models are, since they shape how

close to actual users we are in quantifying IR system performance.

Carterette [5] pointed out that “model-based measures are actu-
ally composed from three distinct underlying models: (1) a browsing
model that describes how a user interacts with results; (2) a model of
document utility, describing how a user derives utility from individual
relevant documents; (3) a utility accumulation model that describes
how a user accumulates utility in the course of browsing.” Like most

papers in IR, Carterette considers as browsing model “that of a
user scanning down ranked results one-by-one and stopping at some
rank k” and, therefore, he models just the probability distribution

of the stopping rank. As a model of document utility, he makes

use of binary or graded relevance judgments and he presents four

utility accumulation models which correspond to well-known eval-

uation measure, e.g. Average Precision (AP) [4] . While Carterette’s

approach does a remarkably good work in retro-fitting a single

coherent framework on existing popular evaluation measures, in

helping us to better understand their constituents, and in paving

the road for a consistent definition of new evaluation measures, it

still suffers from some limitations.

Sakai and Dou [24] pointed out that users do not move just

forward while scanning a ranked result list of documents, but pretty

often they move both forward and backward. As a matter of fact,

query logs from Yandex [26], containing more than 30 million

records, show that more than 20% of the sessions contain also

backward transitions. This observation dramatically changes the

way of modelling users. Indeed, it is no more sufficient to determine

how many documents the user examined in a linear scan in order

to be able to account for both the utility gained and the effort

performed by the user. Instead, we need to consider how much
the user moved (backward and forward) in the ranked result list

before stopping her search. Moreover, also the notion of which
documents have been visited, i.e. what the user gains, should be

modified into howmany times a document has been visited since,

if the user visits the same document more than once, the derived

utility may change at each visit. Moreover, the browsing models

of Carterette are a sort of macro scale description of the user

model, where we only define the probability distribution of the

stopping rank and we abstract away a whole class of users, i.e.

those with that stopping rank distribution, without describing how

(each of) these users actually interact with the ranked result list.

In addition, such browsing models are often very simple, i.e. a

sequential scan, and somehow hard-coded, lacking the possibility

of seamlessly specifying alternative browsing models for the same

measure. On the other hand, the utility accumulation models may

become complicated to accommodate a discount which depends

on the visited rank positions which, conceptually, would better fit

better as part of the browsing model instead. Finally, even within

Carterette’s approach, evaluation measures typically are real valued
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deterministic functions and, at best, they can be parametrised.

In this respect, Carterette et al. [6] observe that distributions are

preferable to point estimates to better grasp user variability.

We overcome these limitations by changing what the browsing

and document utility models are while keeping the utility accu-

mulation model as simple and intuitive as the model of precision

is, i.e. total accumulated utility – how many relevant documents

have been retrieved in the case of precision – discounted by the

effort performed by the user – the length of the run in the case of

precision. We call P@H our new family of stochastic evaluation

measures, being them inspired by the simplicity of precision. We

define the browsing model as a stochastic process, in particular a

Markovian process. Thus, we move to a micro scale description,
where we still aggregate the behaviour of many users but instead

we consider their individual dynamics. As a consequence, we do

not hard code a specific user model into an evaluation measure

but rather we take a generative approach, seamlessly specifying

alternative user models in a single and coherent way. The browsing

model incorporates the rule to determine the stopping rank 𝐻 , that

is in general a stopping time in the sense of the theory of the

stochastic processes. In this way, the stopping rank depends on the

dynamic chosen to describe the users, how they move forward and

backward in the ranked result lists, and may be a finite as well as

an infinite random variable.

The benefit of such a general approach is twofold. Firstly, we

can define a measure of retrieval effectiveness as a function of the

explicitly defined browsing model and its stopping rule, provid-

ing us both with how many documents the user examined and

with how much she moved in the list. Secondly, these measures

will be no more deterministic functions that map runs and topics

into non negative numbers but stochastic processes that map

runs and topics into non negative random variables. Moreover,

this construction can be easily extended to more general Markov-

ian dynamics and/or to a continuous-time setting, by defining the

browsing model as a continuous-time stochastic process. We com-

bine this new browsing model with a new document utility model

accounting for the fact that a user can visit several times the same

document. In this way, not only we comprise Carterette’s notion of

static and dynamic measures, i.e. independent of relevance judge-

ment or dependent on a specific ranking, but we also generalise it

by considering the utility gained by a user as dependent on how
many times a document has been visited. Finally, being stochastic

processes, this new generation of evaluation measures opens up

a whole range of new possibilities when it comes to comparing

and ordering systems. The most basic way of ordering systems

is based on the expected value of such stochastic processes and

this approach corresponds to the traditional way of ordering sys-

tems when you adopt an evaluation measure like AP. However, it is

possible to envision also more sophisticated (partial or total) order-

ings, for example, based on the notion of stochastic dominance [31]
and frame these new measures into the field of the probabilistic

approach to measurement scales [23].

The paper is organised as follows: Section 2 presents the related

works; Section 3 introduces our Markovian browsing model; Sec-

tion 4 describes our document utility model; and, Section 5 defines

our P@H measure and how to order runs. Section 6 shows how

“classical” evaluation measures can be derived within our frame-

work and how our approach can provide new insights about them.

Section 7 draws some conclusions and outlooks for future work.

2 RELATEDWORKS
Cooper [8] proposed Expected Search Length (ESL) where docu-

ments are weakly ordered in levels and users may move randomly

within each level; he computed the expected number of steps needed

to gather the desired number of relevant documents. We share with

these authors the vision of a probabilistic random walk over results

and the stochastic accumulation of relevance.

Robertson [22] introduced a probabilistic model based on the

notion of the probability 𝑝𝑠 (𝑛) of a user satisfaction point at rank

𝑛; AP and Reciprocal Rank (RR) are then derived by using different

distributions 𝑝𝑠 (𝑛) and by cumulating precision at different rank

positions weighted by 𝑝𝑠 (𝑛). A related probabilistic interpretation

of AP has been proposed by Yilmaz and Aslam [32]. We adopt a

congruent vision in that we propose a probabilistic accumulation

model but driven by a explicit user dynamics and how many times

a document has been visited.

Rank-Biased Precision (RBP) by Moffat and Zobel [20] adopts a

simple user model where users sequentially scan the ranked result

list with a probability 𝑝 of advancing to the next rank position

and a probability 1 − 𝑝 to stop; Expected Reciprocal Rank (ERR) by
Chapelle et al. [7] adopts a cascading model where the probability

of continuing search depends on the relevance of the visited docu-

ments; Expected Browsing Utility (EBU) by Yilmaz et al. [33] adopts

a sequential scan approach as well but it distinguishes between

clicked documents and relevant documents to model the stopping

behaviour. Even if they rely on explicit user models, neither these

previous measures are based on a Markovian approach nor they

allow for backward and forward transitions.

Smucker and Clarke [27, 28] proposed Time-Biased Gain (TBG),
which explicitly considers the time spent in scanning documents,

and they view it just as “a semi-Markov model”; note also that

TBG assumes a sequential scanning of the ranked result list. Sakai

and Dou [24] introduced the U-measure which allows for both

forward and backward transitions but it does not adopt aMarkovian

approach. Ferrante et al. [11] defined Markov Precision (MP), where
they used the stationary distribution of a Markov chain to weight

precision values by the (long-run) probability of a user actually

visiting that rank position; in our case, we are not considering the

stationary distribution of the Markov chain but rather the stopping

time. Recently, van Dijk et al. [30] used Markov chains to model

session-based IR but, differently from our case, they focused on

specific layouts of the Markov chain specifically aimed at modelling

the transition from one query to another one.

Recent developments led to the introduction of adaptive/dynamic

user models. In the wake of ESL, Bailey et al. [2] introduced INST, a

measure based on 𝑇 – the number of relevant documents expected

by a user – where the probability of users stopping the search in-

creases as they get closer and closer to𝑇 . Zhang et al. [34] proposed

the Bejeweled Player Model (BPM) which is characterized by upper

limits for both benefits and costs, i.e. a user stops when she either

has found sufficient useful information or has no more patience to

continue. Azzopardi et al. [1] proposed a stopping model based on



the information foraging theory where users stop on the basis of a

goal sensitive constraint, i.e. how much they expect to gain, and a

rate sensitive constraint, i.e. until the rate of gain is high enough.

We can embrace such adaptive user models within our framework

by defining the transition probabilities depending on what the user

has gained, how fast the user has gained, the effort needed to gain;

the investigation on how to actually represent these adaptive user

models within our framework will be focus of our future work.

Markovian approaches find an interesting application also when

it comes to defining user-side and interactive IRmodels of search [19].

Baskaya et al. [3] proposed a searcher model where the main ac-

tions and phases (formulate query, scan a snippet, click a link, read

a document, judge document relevant, stop session) are represented

as states of a Markov chain together with the probabilities of tran-

sitioning from one state to another. Thomas et al. [29] and Maxwell

[19] have extended the early model by Baskaya et al. [3] introducing

more phases and a finer-grained description of transition among

states. All these models could be somehow put in correspondence

with the browsing model of Carterette [5], even if they do not have

the specific goal defining an evaluation measure. Dungs and Fuhr

[9] adopted Hidden Markov Models (HMMs) to distinguish between

different search phases and to recognise them. Both Maxwell and

Azzopardi [18] and Zhang et al. [35] relied on such kind of models to

simulate user interaction and, eventually, evaluate IR systems. Our

work is focused on how Markov chains can be exploited to better

express user models from a system-oriented evaluation perspective.

How to extend P@H to the case of user-oriented evaluation or even

to the more complex case of Interactive Information Retrieval (IIR)
is out-of-scope for this paper and it is left for future work.

Among others, Fuhr [15] raised the issue of the scales adopted

by evaluation measures and how they affect the validity of the com-

puted statistics, like mean and variance. Ferrante et al. [12, 13, 14]

have developed a theory of IR evaluation measures and demon-

strated the scale properties of several state-of-the-art measures.

Recently, Ferrante et al. [10] have started to experimentally show

the impact of departing from the scale assumptions behind evalua-

tion measure. As discussed in the following, our framework can be

used to express several state-of-the-art evaluation measures: some

of them, such as precision and RBP with 𝑝 = 0.5 are interval scales,

some of them, such as AP or ERR, are not. Therefore, measures

instantiated via P@H can be (or not) an interval scale. It is beyond

the scope of the present work to investigate which constraints we

need to impose on P@H in order to always ensure it generates

interval-scale measures. Indeed, our purpose here is mainly to de-

fine a new family of stochastic measures and to show how we can

leverage their distributional properties to order runs. Note, however,

that the key issue raised by Ferrante et al. to determine the scale

properties of an evaluation measure is the notion of order among

runs. Therefore, the stochastic orders brought in by P@H offer an

interesting opportunity of future investigation in this respect.

3 BROWSING MODEL
The browsing model is determined by a stochastic process 𝑋 =

{𝑋𝑛, 𝑛 ∈ N}, where the random variable 𝑋𝑛 denotes the rank posi-

tion of the 𝑛-th document visited by the user. Therefore {𝑋𝑛 = 𝑖}
represents the event “the 𝑛-th document considered by the user is

𝑑𝑖 ”. We assume that the stochastic process defined by the sequence

of random variables 𝑋1, 𝑋2, 𝑋3, . . . forms a Markov Chain.

Let us consider a run consisting of a ranked result list of 𝑁

documents retrieved in response to a given topic 𝑡 , where𝑁 can be a

finite non-negative integer or +∞. Let 𝑑𝑖 be the document retrieved

at rank position 𝑖 . The ranked result list of documents is denoted

with D = {𝑑𝑖 , 𝑖 ≤ 𝑁 } and their ranks with N = {1, 2, . . . , 𝑁 }.
The three basic ingredients needed to define a Markov chain are:

(1) the state space 𝑆 , i.e. the set of values of the random variables𝑋𝑛 ;

(2) the initial distribution, i.e. the distribution of the random variable

𝑋1; and, (3) the transition probabilities matrix, i.e. the matrix whose

entries are defined by 𝑝𝑖, 𝑗 = P[𝑋𝑛+1 = 𝑗 |𝑋𝑛 = 𝑖].
In the following, we assume that:

(1) The state space of the Markov chain is 𝑆 = {𝐸𝑛𝑑}∪N , where

𝐸𝑛𝑑 stands for “end of the search” and N denotes the ranks

of the retrieved documents.

(2) The initial distribution is P[𝑋1 = 1] = 1, i.e. with probability

1 the user starts from the first document in the ranked result

list, as assumed by most evaluation measures [7, 20, 28, 33].

(3) The transition probabilities satisfy the time homogeneous

Markov property

P[𝑋𝑛+1 = 𝑗 |𝑋𝑛 = 𝑖, . . . , 𝑋1 = 𝑖1] = P[𝑋𝑛+1 = 𝑗 |𝑋𝑛 = 𝑖] = 𝑝𝑖, 𝑗
for any 𝑛 ∈ N and 𝑖, 𝑗, 𝑖1, . . . , 𝑖𝑛−1 ∈ 𝑆 .
Moreover, we assume that 𝑝𝐸𝑛𝑑,𝐸𝑛𝑑 = 1, i.e. 𝐸𝑛𝑑 is an absorb-

ing state, and that 𝑝𝑖, 𝑗 = 0 for any 𝑖, 𝑗 ∈ N with |𝑖 − 𝑗 | ≥ 2,

i.e. the user can move only between adjacent rank positions.

When 𝑁 < ∞, we can represent the transition probabilities with

the following stochastic matrix, where we denote the probabilities

to step forward with 𝑝𝑖 , to step backward with 𝑞𝑖 and to stop during

the search with 𝑠𝑖 :
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𝑁 − 2 𝑠𝑁−2 0 0 · · · 0 𝑝𝑁−2 0

𝑁 − 1 𝑠𝑁−1 0 0 · · · 𝑞𝑁−1 0 𝑝𝑁−1
𝑁 1 − 𝑞𝑁 0 0 · · · 0 𝑞𝑁 0
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Example 3.1. The following graph represents the browsing model

in the case 𝑁 = 5.

1 2 3

𝐸𝑛𝑑

4 5

𝑝1

𝑠1 = 1 − 𝑝1

𝑝2

𝑞2

𝑠2
𝑠3

𝑝3

𝑞3

𝑝4

𝑠4

𝑞4

𝑠5 = 1 − 𝑞5

𝑞5

Note that, due to the fact that any row of the transition matrix is a
probability distribution, we have 𝑝1 + 𝑠1 = 1, 𝑞5 + 𝑠5 = 1, 𝑝𝑖 +𝑞𝑖 + 𝑠𝑖 =
1 for 𝑖 = 2, 3, 4.

We can define three major classes of browsing models:



Deterministic Forward Browsing Model (DFBM) 𝑝𝑖 ≡ 1, 𝑞𝑖 =

𝑠𝑖 = 0 for any 𝑖 < 𝑁 and 𝑞𝑁 = 0. This model corresponds to a user

who sequentially scans each document in the ranked result list up

to the last one.

As we will show in Section 6, this is the model behind precision;

note that if you choose an 𝑁 which is less than the length of a

run, e.g. 𝑁 = 5, you can obtain precision at the desired Document
Cut–off Value (DCV).
Stochastic Forward Browsing Model (SFBM) 𝑝𝑖 < 1 for at least

one 𝑖 < 𝑁 and 𝑞𝑖 = 0 for any 𝑖 . This model corresponds to a user

who, at document 𝑑𝑖 , goes to the next document with probability

𝑝𝑖 or stops her search with probability 1 − 𝑝𝑖 .
This model clearly resembles the model adopted by RBP but, as

we will show in Section 6, it can be used also for other evaluation

measures, such as AP, Discounted Cumulated Gain (DCG), and ERR.
RandomWalk Browsing Model (RWBM) max{𝑝𝑖 , 𝑞𝑖 } < 1 for

at least one 𝑖 < 𝑁 . This corresponds to a user who, at document

𝑑𝑖 , goes to the next document with probability 𝑝𝑖 , or returns to the

previous document with probability 𝑞𝑖 , or stops her search with

probability 𝑠𝑖 = 1 − 𝑝𝑖 − 𝑞𝑖 .
This model is new to our framework and, to the best of our knowl-

edge, no “classical” evaluation measure adopts it.

The values of 𝑝𝑖 , 𝑞𝑖 and 𝑠𝑖 may depend on the rank 𝑖 and on

the relevance of the document at that rank and this allows us to

accommodate for both static and dynamic measures as defined

by Carterette [5].

We define the following random variable which represents the

stopping time 𝐻 of the search (see [21] for more details), i.e. the

number of steps done by a single user before ending her search:

𝐻𝐸𝑛𝑑 = inf{𝑛 ≥ 1 : 𝑋𝑛 = 𝐸𝑛𝑑} . (1)

To simplify the exposition, we define 𝐻 = 𝐻𝐸𝑛𝑑 − 1, so 𝑋𝑁 is the

rank of the last document visited by the user.

Note that in the deterministic forward browsing model we have
𝐻 ≡ 𝑁 while in the other two browsing models𝐻 is a non constant

random variable with values on N . Furthermore, if the number of

documents is finite, in the case of the stochastic forward browsing
model 𝐻 is finite while in the case of the random walk browsing
model it is an integer valued random variable.

4 DOCUMENT UTILITY MODEL
Since our browsing models allow for several visits to the same rank

position, we have to take into account this and assume that at each

visit the user may derive just part of the utility of a document.

If 𝑑𝑖 denotes the document retrieved at rank position 𝑖 and if 𝑡

is a topic, we define 𝑟𝑡 [𝑑𝑖 ] ∈ 𝑅𝐸𝐿 as the relevance of document 𝑑𝑖
with respect to topic 𝑡 . 𝑅𝐸𝐿 is the set of the relevance degrees and it

is a finite or countable totally ordered set which admits a minimum

value 𝑟𝑒𝑙0. Thus, 𝑟𝑡 [𝑑𝑖 ] = 𝑟𝑒𝑙0 means that the document 𝑑𝑖 is not
relevant for the topic 𝑡 . Higher values of 𝑅𝐸𝐿 stand for documents

more and more relevant with respect to the topic 𝑡 . To simplify the

notation we denote 𝑟𝑡 [𝑑𝑖 ] simply by 𝑟 [𝑖].
The document utility model is defined by an infinite matrix of

non negative real values 𝑔(𝑘,𝑦), where 𝑘 ∈ N and 𝑦 ∈ 𝑅𝐸𝐿. 𝑔(𝑘,𝑦),
called the document utility loss, defines the utility gained by

a user when considering for the 𝑘–th time a document whose

relevance is equal to 𝑦. We assume that the function 𝑘 → 𝑔(𝑘,𝑦) is
a non increasing function for any 𝑦. As a function of 𝑦 we assume

that 𝑔(𝑘, 𝑟𝑒𝑙0) = 0 for any 𝑘 and 𝑦 → 𝑔(1, 𝑦) is a non decreasing
function for any 𝑘 . When 𝑘 > 1 it is intuitive to stil assume that

the function 𝑦 → 𝑔(𝑘,𝑦) is non decreasing. However, it may be

possible that a sensible utility model violates this assumption; for

example the loss for visiting more times a highly relevant document

might make it less relevant than the loss incurred by a partially

relevant document visited the same number of times.

Example 4.1. Continuing Example (3.1) and taking 𝑅𝐸𝐿 = {𝑟𝑒𝑙0,
𝑟𝑒𝑙1, 𝑟𝑒𝑙2, 𝑟𝑒𝑙3} a possible utility deriving model could be:

𝑔(𝑘, 𝑟𝑒𝑙𝑖 ) = 𝑖 (1 − 𝜆)𝑘−1 for all 0 ≤ 𝑖 ≤ 3 and 𝑘 ≥ 1

where 𝜆 ∈ [0, 1] represents the percentage of utility lost at any visit.
Taking 𝜆 = 0.5, the judged run [3, 2, 3, 0, 1] and assuming that𝑋1 = 1,
𝑋2 = 2, 𝑋3 = 1, 𝑋4 = 2, 𝑋5 = 3 and 𝑋6 = 𝐸𝑛𝑑 , we get 𝐻 = 5 and
𝑔(1, 𝑋1) = 3, 𝑔(1, 𝑋2) = 2, 𝑔(2, 𝑋3) = 3 × 0.5 = 1.5, 𝑔(2, 𝑋4) =

2 × 0.5 = 1 and 𝑔(1, 𝑋5) = 3.

5 THE P@HMEASURE
A run 𝑟 is a (finite or countable) vector (𝑟 [1], . . . , 𝑟 [𝑁 ]), where 𝑟 [𝑖]
has been defined above. Given a run 𝑟 , we call P@H the measure

𝑃@𝐻 (𝑟 ) = 1

𝑓 (𝐻 )

𝐻∑
𝑛=1

𝑔 (𝑘 (𝑛), 𝑟 [𝑋𝑛]) (2)

where 𝑘 (𝑛) = |{𝑖 ≤ 𝑛 : 𝑋𝑖 = 𝑋𝑛}| is the random number of times

the user visited the rank position at which is after 𝑛 steps and

ℎ → 𝑓 (ℎ) is a real positive non decreasing function.

Within P@H, we have:

• browsing model: it is defined by the transition matrix of the

Markov chain 𝑋 = {𝑋𝑛, 𝑛 ∈ N}. Note that the transition proba-

bilities can depend on the rank position, allowing us to model

some notion of discount depending on the rank position, and/or

on the relevance of the document at that rank position. In this

way, we can frame both static and dynamic measures, as intended

by Carterette [5].

• document utility model: it is determined by the document utility

loss function, since 𝑔(𝑘 (𝑛), 𝑟 [𝑋𝑛]) denotes the utility gained by

the user when she visits the document at rank𝑋𝑛 for the 𝑘 (𝑛)–th
time. In this way, we can account for the impact of how many

times a document has been visited which, to the best of our

knowledge, is new to our measure.

• utility accumulation model: it consists of the total utility collected
by a user who moves according to one of our browsing models di-

vided by a function of the (random) number of documents visited

during her search, which act as a proxy of her effort. We have

kept the utility accumulation model as simple as possible, even

if still flexible enough to encompass many of the state-of-the-art

evaluation measures. Note that, differently from “classical” evalu-

ation measures which typically discount the accumulated utility

by the rank position of the visited documents, we instead dis-

count it by (a function 𝑓 of) the stopping time, i.e. the stochastic

number of steps actually performed by the user which is a more

accurate estimation of her effort.



5.1 Ordering Runs
Since P@H is a random variable, in order to compare two different

runs 𝑟 and 𝑠 , we need to define an order among random objects.

The first and relatively naive way to order runs is to compute the

expectations of the two random variables, i.e. P@H for the run 𝑟

and 𝑠 , and order them accordingly to the order of their expectations:

𝑃@𝐻 (𝑟 ) ⪯1 𝑃@𝐻 (𝑠)
⇕ (3)

E

[
1

𝑓 (𝐻 )

𝐻∑
𝑛=1

𝑔(𝑘 (𝑛), 𝑟 [𝑋𝑛])
]
≤ E

[
1

𝑓 (𝐻 )

𝐻∑
𝑛=1

𝑔(𝑘 (𝑛), 𝑠 [𝑋𝑛])
]

Note that the ⪯1 order corresponds exactly to what is usually

done when you order runs by a “classical” evaluation measure

like AP. The pros are that this is a total order among runs while

the cons are that we may underestimate the presence of outliers

and/or other asymmetries that can greatly skew the expectations.

Moreover, this order may be difficult to compute in a closed form

due to the expectation of the division of two random variables, i.e.∑𝐻
𝑛=1 . . . and 𝑓 (𝐻 ); please, refer to the Electronic Appendix A for

more details on this.

To make the explicit computation simpler, we can slightly modify

the order ⪯1 as follows:

𝑃@𝐻 (𝑟 ) ⪯2 𝑃@𝐻 (𝑠)
⇕ (4)

E
[∑𝐻

𝑛=1 𝑔(𝑘 (𝑛), 𝑟 [𝑋𝑛])
]

E[𝑓 (𝐻 )] ≤
E
[∑𝐻

𝑛=1 𝑔(𝑘 (𝑛), 𝑠 [𝑋𝑛])
]

E[𝑓 (𝐻 )]

since the expectation of the two random variables

∑𝐻
𝑛=1 . . . and

𝑓 (𝐻 ) is simpler to compute in closed form; please, refer to the

Electronic Appendix B
1
for more details on this.

Despite these two orders are simple to understand, they are not

really stochastic orders, where the whole distribution of P@H is

taken into account. Thus, we can define the following stochastic

order based on the notion of stochastic dominance [16, 31]:

𝑃@𝐻 (𝑟 ) ⪯3 𝑃@𝐻 (𝑠)
⇕ (5)

P

[
1

𝐻

𝐻∑
𝑛=1

𝑔(𝑘 (𝑛), 𝑟 [𝑋𝑛]) > 𝑥
]
≤ P

[
1

𝐻

𝐻∑
𝑛=1

𝑔(𝑘 (𝑛), 𝑠 [𝑋𝑛]) > 𝑥
]

∀ 𝑥 ∈ R

The pros are that this order really embodies the idea that 𝑃@𝐻 (𝑠)
is stochastically larger then 𝑃@𝐻 (𝑟 ), while the cons are that this
is just a partial order and we have to decide how order runs in the

case they cannot be compared, i.e. when there are swaps between

the two probabilities for some values of 𝑥 .

5.2 Simulation
We now compute our stochastic evaluation measures according to

different browsing models by simulating the interaction of 100,000

users with respect to the runs 𝑟 = [1 0 0 1 0 0 1 0 0 1] and 𝑠 =

[0 1 1 1 1 0 0 0 0 0] of length 𝑁 = 10. To ease the reproducibility of

the experiments, the code for running the simulation is available at

https://bitbucket.org/frrncl/ictir2020/.

Figure 1 shows the results of the simulation and the cumula-

tive distribution function 𝐹 (𝑥) of the P@H measure for run 𝑟 in

blue and 𝑠 in red. The dashed vertical line shows the estimated

E
[

1

𝑓 (𝐻 )
∑𝐻
𝑛=1 . . .

]
, i.e. order ⪯1; the dotted vertical line shows

E
[∑𝐻

𝑛=1 ...
]

E[𝑓 (𝐻 ) ] , i.e. order ⪯2; note that the cumulative distribution func-

tion 𝐹 (𝑥) of P@H allows us to visually estimate order ⪯3, where

the higher the value of 𝐹 (𝑥), the smaller the run.

Figure 1a adopts a DFBM model which, as explained in Sec-

tion 6.1, corresponds to Precision. Since we use a deterministic

browsing model, the cumulative distribution function 𝐹 (𝑥) col-
lapses into a single value which also corresponds to the expecta-

tions computed according to orders ⪯1 and ⪯2. We can observe as

these values correspond to the P@10 = 0.4 score reported in the

legend of the plot. Note that, since both runs 𝑟 and 𝑠 have the same

P@10 score the blue and red lines are overlapping; similarly, since

orders ⪯1 and ⪯2 collapse into the same value, dashed and dotted

lines overlap as well.

Figure 1b adopts a SFBMmodel which, as explained in Section 6.2,

corresponds to AP. In particular, AP is equivalent to the expectation

computed according to order ⪯1 and, indeed, we can see that the

dashed blue line corresponds to the AP = 0.58 score of the 𝑟 run

while the dashed red line corresponds to the AP = 0.68 score of the

𝑠 run. Moreover, the plots of the cumulative distribution function

𝐹 (𝑥) of P@H show richer information. Firstly, 𝑟 and 𝑠 are not

comparable according to order ⪯3, i.e. the stochastic dominance,

since their distributions cross around 𝑃@𝐻 = 0.75. Secondly, even

if the plain AP scores would lead to conclude that 𝑠 is much better

than 𝑟 , the cumulative distribution function of P@H shows that,

for roughly 20% of the users for who the two runs are performing

quite well, i.e. P@H over 0.75, 𝑟 is actually better than 𝑠 . Finally, we

can note how order ⪯2 is consistent with order ⪯1 still considering

𝑠 better than 𝑟 but in a more marked way.

Figure 1c adopts a SFBMmodel which, as explained in Section 6.3,

corresponds to RBP with persistence parameter 𝑝 = 0.5. In partic-

ular, RBP is equivalent to the expectation computed according to

order ⪯2 and, indeed, we can see that the dotted blue line corre-

sponds to the RBP = 0.57 score of the 𝑟 run while the dotted red

line corresponds to the RBP = 0.47 score of the 𝑠 run. In this case,

we can observe as all the three orders agree since 𝑟 is stochastic

dominant over 𝑠 according to order ⪯3 and it is better than 𝑠 also

according to order ⪯2, even if in a less marked way than according

to order ⪯1. Finally, as in the previous case, we can note how the cu-

mulative distribution function of P@H provides richer information

than the plain RBP score. For example, we can see that roughly half

of the users has a uniform probability to observe low to medium

performance for run 𝑠 and medium to high performance for run

𝑠 . This observation is consistent with the stop probability 𝑠𝑖 = 0.5;

indeed, the run 𝑠 has a single cluster of relevant documents at the

top of the ranking and users who will go deep down in the ranking

will find no relevant documents, still spending time and effort in

the run; conversely, 𝑟 has the same number of relevant documents

as 𝑠 but scattered all over the ranking and thus persistent users are

rewarded.

Figure 1d adopts a RWBM model which does not correspond to

any “classical” evaluation measure. This RWBM model adopts the

same forward probability 𝑝𝑖 = 0.50 as RBP before but, differently

https://bitbucket.org/frrncl/ictir2020/


r (AP = 0.58; P@10 = 0.40; RBP = 0.57)
s (AP = 0.68; P@10 = 0.40; RBP = 0.47)

(a) DFBM model à la Precision; see
Section 6.1 for further details. The
transition probabilities are as fol-
lows: 𝑝1 = 1.00; 𝑝𝑖 = 1.00; 𝑠𝑁 = 1.00.

r (AP = 0.58; P@10 = 0.40; RBP = 0.57)
s (AP = 0.68; P@10 = 0.40; RBP = 0.47)

(b) SFBM model à la AP; see Sec-
tion 6.2 for further details. The
transition probabilities depend on
the relevance of the visited docu-
ments and on the total number of
retrieved documents.

r (AP = 0.58; P@10 = 0.40; RBP = 0.57)
s (AP = 0.68; P@10 = 0.40; RBP = 0.47)

(c) SFBM model à la RBP with per-
sistence 𝑝 = 0.5; see Section 6.3
for further details. The transition
probabilities are as follows: 𝑝1 =

0.50 and 𝑠1 = 0.50; 𝑝𝑖 = 0.50 and
𝑠𝑖 = 0.50; 𝑠𝑁 = 1.00.

r (AP = 0.58; P@10 = 0.40; RBP = 0.57)
s (AP = 0.68; P@10 = 0.40; RBP = 0.47)

(d) RWBM model with a 25% doc-
ument utility loss. The transition
probabilities are as follows: 𝑝1 =

0.75 and 𝑠1 = 0.25; 𝑝𝑖 = 0.50, 𝑞𝑖 =

0.25, and 𝑠𝑖 = 0.25; 𝑞𝑁 = 0.25 and
𝑠𝑁 = 0.75.

Figure 1: Comparison of two runs 𝑟 = [1 0 0 1 0 0 1 0 0 1] and 𝑠 = [0 1 1 1 1 0 0 0 0 0] using 100,000 users and different browsing
models Each subplot shows the cumulative distribution function 𝐹 (𝑥) of the P@Hmeasure for run 𝑟 in blue and 𝑠 in red. The
dashed vertical line shows order ⪯1; the dotted vertical line shows order ⪯2; note that the cumulative distribution function
𝐹 (𝑥) of P@H allows us to visually estimate order ⪯3, where the higher the value of 𝐹 (𝑥), the smaller the run.

from the previous case, the stop probability is evenly split into a

backward probability 𝑞𝑖 = 0.25 and a stop probability 𝑠𝑖 = 0.25; it

also adopts a document utility loss equal to 25% at each subsequent

visit of the same document. We can observe how this case behaves

in a more complex way. Firstly, the two runs are not comparable

according to order ⪯3 but in a more mixed way, since their cumu-

lative distribution functions 𝐹 (𝑥) cross each other several times,

suggesting that roughly 25%–30% of the users prefers 𝑠 over 𝑟 just

in the medium performance range 0.40–0.68. Secondly, orders ⪯1

and ⪯2 do not agree and swap the two runs in quite a marked way.

6 CLASSICAL EVALUATION MEASURES
Since all the “classical” evaluation measures rely on a forward

browsing model, either DFBM or SFBM, the user never visits the

same document more than once. Therefore, we can assume that

there is no utility loss, i.e. that𝑔(𝑘,𝑦) = 𝑔(𝑦) for all 𝑘 . Furthermore,

since for any𝑛 ≤ 𝑁 we have𝑋𝑛 = 𝑛, we write 𝑟 [𝑛] instead of 𝑟 [𝑋𝑛].
Finally, in this section we assume that 𝑅𝐸𝐿 = {0, 1} in the binary

case and 𝑅𝐸𝐿 = {0, 1, . . . ,𝑚} in the multi-graded case.

6.1 Precision
To define precision, we adopt the DFBM model, since the user

sequentially scans, in a deterministic way, all the rank positions up

to the end of the run when she stops; we also take 𝑔(𝑦) = 𝑦 and

𝑓 (ℎ) = ℎ. Note that in this case 𝐻 = 𝑁 almost surely. Therefore,

we have:

𝑃 =
1

𝑓 (𝐻 )

𝐻∑
𝑛=1

𝑟 [𝑋𝑛] =
1

𝑁

𝑁∑
𝑛=1

𝑟 [𝑛] (6)

Note that, in this case, we have that 𝑃 = E
[

1

𝑓 (𝐻 )
∑𝐻
𝑛=1 𝑟 [𝑋𝑛]

]
=

E
[∑𝑁

𝑛=1 𝑟 [𝑛]
]

E[𝑓 (𝐻 ) ] , i.e. order ⪯1 and order ⪯2 are the same. Moreover,

since in this case the distribution of 𝑃 is a constant, they also coin-

cide with order ⪯3.

6.2 Average Precision
Let us assume binary relevance, i.e. 𝑅𝐸𝐿 = {0, 1} and that 𝑔(𝑦) = 𝑦,
𝑓 (ℎ) = ℎ as before. We also assume that (1) the user follows the

SFBM model, since she sequentially scans the rank positions in a

stochastic way, i.e. she may continue scanning or stop searching;

(2) she moves forward with probability 1 after considering a not

relevant document; (3) she may stop her search with a constant

strictly positive probability only after considering a relevant docu-

ment. This probability is equal to the reciprocal of the recall base

𝑅𝐵𝑡 , i.e. the total number of relevant documents for topic 𝑡 .

Note that assumption (3) implies that the user moves forward

with probability 1 − 1

𝑅𝐵𝑡
after considering a relevant document.

We can thus obtain AP as the expectation of the P@H measure

using the above browsing model, i.e. AP coincides with order ⪯1:

𝐴𝑃 = E

[
1

𝐻

𝐻∑
𝑛=1

𝑟 [𝑋𝑛]
]
=

1

𝑅𝐵𝑡

𝑁∑
𝑖=1

𝑟 [𝑖] 1
𝑖

𝑖∑
𝑗=1

𝑟 [ 𝑗] (7)

This interpretation of AP is correct only when the run retrieves

all the 𝑅𝐵𝑡 relevant documents. Indeed, assumption (2) means that

the probability of stopping at rank position 𝑖 is P[𝐻 = 𝑖] = 0 when

the document at rank 𝑖 is not relevant; assumption (3) means that

the probability of stopping at rank position 𝑖 is P[𝐻 = 𝑖] = 1

𝑅𝐵𝑡

when the document at rank 𝑖 is relevant; in short we can write that

P[𝐻 = 𝑖] = 𝑟 [𝑖 ]
𝑅𝐵𝑡

. Therefore, the total probability of stopping the

search at any rank position is

∑𝑁
𝑖=1 P[𝐻 = 𝑖] =

∑𝑁
𝑖=1

𝑟 [𝑖 ]
𝑅𝐵𝑡

which

sums to 1 only if the run retrieves all the 𝑅𝐵𝑡 relevant documents.

Therefore, the choice of 𝑟 [𝑖]/𝑅𝐵𝑡 is just an approximation of

the exact value that is 𝑟 [𝑖]/𝑅𝑁 , where 𝑅𝑁 = 𝑟 [1] + . . . + 𝑟 [𝑁 ] is
the total number of relevant documents actually retrieved by the

run. Thus, the correct SFBM model uses the following transition

probabilities

1 0 0 0 · · · 0

𝑟 [1]
𝑅𝑁

0
𝑅𝑁 −𝑅1

𝑅𝑁
0 · · · 0

𝑟 [2]
𝑅𝑁 −𝑅1

0 0
𝑅𝑁 −𝑅2

𝑅𝑁 −𝑅1

· · · 0

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

𝑟 [𝑁−1]
𝑅𝑁 −𝑅𝑁−2

0 0 0 · · · 𝑅𝑁 −𝑅𝑁−1
𝑅𝑁 −𝑅𝑁−2

1 0 0 0 · · · 0


where 𝑅𝑖 = 𝑟 [1] + . . . + 𝑟 [𝑖].



Despite being deemed the de-facto gold standard measure in

IR [32], AP is often criticised because of the lack of a convincing

user model. Moffat and Zobel [20] argued that the model behind AP

is abstract, complex, and far away from the real behavior of users

interacting with an IR system, especially when it comes to its de-

pendence on the recall base which is something actually unknown

to real users. As a consequence, Robertson [22] proposed a simple

but moderately plausibile user model: “AP is the expected precision,
given that our prediction of the user’s stopping point is uniformly
distributed over all the relevant documents for this topic”.

Our browsing model for AP further pushes Robertson’s interpre-

tation since assumption (3) sets the probability of stopping as the

reciprocal of the recall base. However, apart this being an approxi-

mation of the correct stopping probability as discussed above, our

browsing model further stresses how much the user model behind

AP is not very realistic anyway. Indeed, even in the correct case

without pretending to know the whole recall base, the probability

of stopping the search depends on the total number of relevant

documents retrieved by a run and this information is not known to

the user before actually ending to scan the run.

6.3 Rank-Biased Precision (RBP)
RBP [20] assumes a user model where the user starts from the top

ranked document and with probability 𝑝 , called persistence, she

goes to the next document or with probability 1−𝑝 stops. Therefore,
the probability that the user stops her search at rank 𝑖 is equal to

𝑝𝑖−1 (1 − 𝑝). The RBP user model can be straightforwardly mapped

to our SFBM model.

Assuming that the ranked result list is infinite, the expected

number of document examined by the user is equal to (1 − 𝑝)−1,
since

∞∑
𝑖=1

𝑖 ·
[
𝑝𝑖−1 · (1 − 𝑝)

]
=

1

1 − 𝑝 , (8)

while the total known expected utility derived by the user is equal to∑𝑁
𝑖=1 𝑟 [𝑖]𝑝𝑖−1; please, refer to the Electronic Appendix C for more

details on this.

RBP is then defined as:

𝑅𝐵𝑃 = (1 − 𝑝)
𝑁∑
𝑖=1

𝑟 [𝑖]𝑝𝑖−1 (9)

i.e. “the total known expected utility derived by the user... divided
by the average number of items inspected”, as stated by Moffat and

Zobel.

In our framework, the intention of Moffat and Zobel in defining

RBP is expressed as

E
[∑𝐻

𝑛=1 𝑟 [𝑋𝑛 ]
]

E[𝑓 (𝐻 ) ] with 𝑔(𝑦) = 𝑦, 𝑓 (ℎ) = ℎ, which
corresponds to order ⪯2. However, when the total number of re-

trieved documents 𝑁 is finite, the above expression and eq. (8) are

no more equal. Indeed, we cannot simply replace∞ by 𝑁 in the left

hand side of (8), since the probability of stopping at rank 𝑁 is in

this case equal to 𝑝𝑁−1
. Nevertheless, the computations in the Elec-

tronic Appendix C
2
show how the average number of documents

visited in the case 𝑁 < ∞ is equal to

∑𝑁−1
𝑖=0 𝑝𝑖 =

1−𝑝𝑁

1−𝑝 =: 𝐾 (𝑝, 𝑁 ) .
As it can be expected, 𝐾 (𝑝, 𝑁 ) converges to (1 − 𝑝)−1 as 𝑁 → ∞.

In this sense, the value (1− 𝑝)−1 derived in (8) is an approximation

of the exact one 𝐾 (𝑝, 𝑁 ) and to simplify the notation we define

𝐾 (𝑝,∞) = (1 − 𝑝)−1. Therefore, following the intentions of the

authors, the definition of RBP should be:

𝑅𝐵𝑃 (𝑁 ) =
E
[∑𝐻

𝑛=1 𝑟 [𝑋𝑛]
]

E [𝐻 ] = 𝐾 (𝑝, 𝑁 )−1
𝑁∑
𝑛=1

𝑟 [𝑖]𝑝𝑖−1 ,

and the original 𝑅𝐵𝑃 measure now becomes 𝑅𝐵𝑃 (∞).
Note that Carterette [5] suggests an alternative interpretation of

RBP as “the expected relevance of the document at the stopping rank”.
Even though this interpretation is correct, our approach is able to

generalize RBP following the original intentions of the authors and

to adjust it for not infinite rankings.

6.4 Discounted Cumulated Gain (DCG)
DCG [17] is a multi-graded relevance measure given by

DCG𝑏 (𝑟 ) =
𝑁∑
𝑖=1

𝑤 (𝑟 [𝑖])
max{1, log𝑏 𝑖}

(10)

where base 𝑏 of the logarithm indicates the patience of the user

in scanning the ranked result list and plays a role somewhat simi-

lar to the persistence parameter 𝑝 of RBP. The weight function𝑤

monotonically maps 𝑅𝐸𝐿 into [0, +∞) to assign the weights corre-

sponding to each relevance degree.

As explained before, what is classically considered as a discount

factor in the utility accumulation model, in our framework becomes

part of the browsing model and the distribution of its stopping time.

Therefore, DCG can be seen as the expectation of a suitable P@H

measure where the term 𝑓 (𝐻 ) is a constant value, chosen equal to 1

for simplicity. Note that, in this case order ⪯1 and ⪯2 are the same.

Also note that the constant 𝑓 (𝐻 ) underlines how DCG is more

focused on the utility accumulation process, i.e. the numerator of

P@H, than on the effort required to derived such utility.

Electronic Appendix D
2
reports the detailed computations which

lead to obtain DCG thanks to a FSBM model.

6.5 Expected Reciprocal Rank (ERR)
ERR [7] is a multi-graded relevance measure given by

ERR(𝑟 ) =
𝑁∑
𝑖=1

1

𝑖

𝑖−1∏
𝑗=1

(1 − 𝑅 𝑗 )𝑅𝑖 (11)

where 𝑅𝑖 denotes the probability that the user stops her search

after considering the document at rank position 𝑖 , since she is

satisfied. Usually 𝑅𝑖 depends on the relevance of the document at

rank position 𝑖 , but does not depend on the rank position itself.

Chapelle et al. [7] assume 𝑅𝑖 = 𝜌 (𝑟 [𝑖]) where 𝜌 ( 𝑗) = 2
𝑗−1
2
𝑘 .

We can frame ERR into P@H by using a “quantised” utility accu-

mulation model, since here the interest is in the “effort” of the user

for achieving a positive utility rather than in the amount of such

utility. To this end, 𝑔 has to depend also on 𝑛 and we assume that

𝑔1 (𝑦) = 1 for any 𝑘 , while 𝑔𝑛 ≡ 0 for 𝑛 > 1. Furthermore, since we

do not have an additional state for the case of a user ending her

search “unsatisfied”, we have that, once the user arrives at rank 𝑁 ,

she stops her search with probability 1, defining therefore 𝑅𝑁 = 1.

Taking 𝑓 (𝑦) = 𝑦, and defining the FSBM model with transition



matrix: 

1 0 0 · · · 0

𝑅1 0 1 − 𝑅1 · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

𝑅𝑁−1 0 0 · · · 1 − 𝑅𝑁−1
𝑅𝑁 0 0 · · · 0


we obtain

ERR(r) = E

[
1

𝐻

]
=

𝑁∑
𝑖=1

1

𝑖
P[𝐻 = 𝑖] =

𝑁∑
𝑖=1

1

𝑖

𝑖−1∏
𝑗=1

(1 − 𝑅 𝑗 )𝑅𝑖

since P[𝐻 = 𝑖] = ∏𝑖−1
𝑗=1 (1 − 𝑅 𝑗 )𝑅𝑖 .

7 CONCLUSIONS AND FUTUREWORK
In this paper we have introduced a new family of stochastic evalua-

tion measures which rely on Markov chains and the distribution

of their stopping time 𝐻 to overcome several limitations of ”clas-

sical” evaluation and to extend the general framework proposed

by Carterette [5]. In particular, our P@H measure combines the

simplicity and intuitiveness behind Precision, i.e. a straightforward

utility accumulation model where the total derived utility is dis-

counted by the effort incurred to gain it, with a powerful browsing

model, where the way in which the user interacts with the ranked

result list is captured by a Markov chain. We have shown, both

theoretically and experimentally, how these new measures are ac-

tually random variables associated with a whole distribution of

scores rather than a single deterministic value and that they pro-

vide a richer description of the performance range experienced

by users. Moreover, we have demonstrated, both theoretically and

experimentally, how state-of-the-art evaluation measures – namely

Precision, AP, RBP, DCG, and ERR – can all be coherently repre-

sented in our new framework. Finally, we have shown that our new

family of measures can be used to simulate how users interact with

system runs and how to score their performance accordingly.

We have described how these new measures can be leveraged to

define different ways of comparing and ordering system runs and

we have experimentally shown that these orders may or may not

agree with each other and that they may be just partial orders, being

some run pairs not comparable. Future work will thus concern a

deeper investigation of these orders, under which conditions they

are possible, and when they agree or not.

Moreover, Ferrante et al. [14] have recently proposed a theory

for the interval scale properties of deterministic evaluation mea-

sures which is based on how measures order runs. Future work

will thus concern a deeper investigation of these orders, under

which conditions they are possible, and when they agree or not.

We will investigate how our orders can be related to the orders

introduced by Ferrante et al. [14] in their recent theory about eval-

uation measures and how we can constraint P@H to ensure that

the generated measures are interval scales within the framework

of the probabilistic approach to the measurement scales [23].

Finally, we will investigate additional Markovian browsing mod-

els, able to grasp more complex user interactions, like reading a

snippet or clicking a document, in order go also towards the user-

oriented side of the evaluation spectrum.
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In this appendices we present some explicit computations regard-
ing the total orders defined in the paper and how we derive the
expressions for some classical measures. For simplicity, we con-
sider 𝑅𝐸𝐿 = {0, 1} in the binary case and 𝑅𝐸𝐿 = {0, 1, . . . ,𝑚} in the
multi-graded case.

A COMPUTATION OF ORDER ⪯1
To be able to organize runs according to the total order ⪯1, we need

to compute E[𝑃@𝐻 ] = E[ 1
𝑓 (𝐻 )

∑𝐻
𝑛=1 𝑔(𝑘 (𝑛), 𝑟 [𝑋𝑛])] .

In the case of the SFBM model with constant transition probabil-
ities 𝑝𝑖 ≡ 𝑝 and taking 𝑓 (𝑦) = 𝑦 and 𝑔(𝑘,𝑦) = 𝑦, we obtain:

E[𝑃@𝐻 ] =
𝑁−1∑
ℎ=1

𝑝ℎ−1 (1 − 𝑝) 1
ℎ

ℎ∑
𝑖=1

𝑔(1, 𝑟 [𝑖]) + 𝑝𝑁 1
𝑁

𝑁∑
𝑖=1

𝑔(1, 𝑟 [𝑖])

which is similar to RBAP (Rank based Average Precision) defined
by Carterette [1].

However, for a general transition matrix 𝑃 = {𝑝𝑖 𝑗 }𝑖, 𝑗 ∈S , as we
have in the RWBM model, we obtain the following expression

E𝑖 [𝑃@𝐻 ] = E𝑖

[
1
𝐻

𝐻∑
𝑛=1

𝑔(𝑘 (𝑛), 𝑟 [𝑋𝑛])
]

=

∞∑
ℎ=1

∑
𝑖 𝑗≠𝐸𝑛𝑑,𝑗≤ℎ

(
1
ℎ

ℎ∑
𝑛=1

𝑔(𝑘 (𝑛), 𝑟 [𝑖𝑛])
)
𝑝𝑖,𝑖2 · · · 𝑝𝑖ℎ,𝐸𝑛𝑑

which cannot be further simplified.
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B COMPUTATION OF ORDER ⪯2
To be able to order runs according to the total order ⪯2„ we need
to compute two expectations, namely E[∑𝐻

𝑛=1 𝑔(𝑘 (𝑛), 𝑟 [𝑋𝑛])] and
E[𝐻 ]. Since 𝐻 =

∑𝐻
𝑛=1 𝑔(𝑘 (𝑛), 𝑟 [𝑋𝑛]) if 𝑔(𝑘,𝑦) ≡ 1, it is sufficient

to evaluate the first one in order to also derive the second. Let
𝑇 (𝐻 ) =

∑𝐻
𝑛=1 𝑔(𝑘 (𝑛), 𝑟 [𝑋𝑛]) and assume that 𝑔(𝑘,𝑦) = 𝑔(𝑦) for

any 𝑘 (relevant just in the case of the Random Walk model). For
any 𝑖 ∈ N

E [𝑇 (𝐻 ) |𝑋1 = 𝑖] = E𝑖 [𝑓 (𝐻 )] = E𝑖
[∑𝐻

𝑛=1 𝑔(𝑟 [𝑋𝑛])
]

=
∑

𝑗 ∈S E𝑖

[∑𝐻
𝑛=1 𝑔(𝑟 [𝑋𝑛])

����𝑋2 = 𝑗

]
𝑝𝑖 𝑗

= 𝑔(𝑟 [𝑖]) + ∑
𝑗 ∈N E𝑗 [𝑇 (𝐻 )] .

If 𝐸 = [E1 [𝑇 (𝐻 )], . . . ,E𝑁 [𝑇 (𝐻 )]]𝑡𝑟 , where 𝑡𝑟 means taking the
transpose, and 𝜌 = (𝑟 [1], . . . , 𝑟 [𝑁 ])𝑡𝑟 we have in matrix notation

𝐸 = (𝐼𝑑 − 𝑃)−1𝜌, (1)

where 𝐼𝑑 is the identity matrix and 𝑃 = {𝑝𝑖 𝑗 }𝑖, 𝑗 ∈N .
By a similar computation, we can derive the conditional vari-

ances Var𝑖 [𝑇 (𝐻 )] = E𝑖 [𝑇 2 (𝐻 )] − (E𝑖 [𝑇 (𝐻 )])2. Defined
𝑉 = [Var1 [𝑇 (𝐻 )], . . . ,Var𝑁 [𝑇 (𝐻 )]]𝑡𝑟

and the diagonal matrix 𝑅 = diag (𝑟 [1], . . . , 𝑟 [𝑁 ]), we have that

𝑉 = (𝐼𝑑 − 𝑃)−1𝑅
[
𝐼𝑑 − 2𝑃 (1 − 𝑃)−1

]
𝜌,

To conclude, in this case we are also able to evaluate the conditional
distribution of 𝑇 (𝐻 ) in a closed form. Let 𝑠𝑖 (𝑛) B P𝑖 (𝑇 (𝐻 ) = 𝑛)
and denote 𝑠 = (𝑠1 (𝑛) . . . , 𝑠𝑖 (𝑛))𝑡𝑟 ; a computation similar to the
previous ones gives

𝑠 =

[ [
𝐼𝑑 − (𝐼𝑑 − 𝑅)𝑃

]−1
𝑅𝑃

]𝑛−1
×

[
𝐼𝑑 −

[
𝐼𝑑 − (1 − 𝑅)𝑃

]−1
𝑅𝑃

] [
𝐼𝑑 − (𝐼𝑑 − 𝑅)𝑃

]−1
𝜌,

From these computations and taking 𝑔(𝑦) ≡ 1 we derive the
expectation, variance and distribution of 𝐻 alone. Indeed, we get

𝐸 = (𝐼𝑑 − 𝑃)−1𝑒, (2)

where 𝑒 = (1, . . . , 1)𝑡𝑟 ,

𝑉 = (𝐼𝑑 − 𝑃)−1
[
𝐼𝑑 − 2𝑃 (1 − 𝑃)−1

]
𝑒

and

𝑠 = 𝑃𝑛−1
[
𝐼𝑑 − 𝑃

]
𝑒 .

In the particular case of the Stochastic forward model with 𝑝𝑖 ≡
𝑝 and 𝑔 not depending on 𝑘 (𝑛), as natural in this case, we can
compute explicitly E1 [𝑇 (𝐻 )] and Var1 [𝑇 (𝐻 )] (which are the most

https://doi.org/10.1145/3409256.3409832
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interesting quantities, since we always assume that the search starts
from the first document with probability 1). Indeed we have

E1 [𝑇 (𝐻 )] =
𝑁∑
𝑖=1

𝑟 [𝑖]𝑝𝑖−1,

and

Var1 [𝑇 (𝐻 )] =
𝑁∑

𝑚=2
𝑟 [𝑚]𝑝𝑚−1 (1 − 𝑝𝑚−1)

×
[
𝑟 [𝑚] + 2

𝑁∑
𝑖=𝑚+1

𝑟 [𝑖]𝑝𝑖−𝑚
]
.

Note that E1 [𝑇 (𝐻 )] coincides, up to a constant, with RBP.

C RBP AS E[P@H]
Consider the RWBM model, in the simplified case of 𝑝𝑖 = 𝑝 and
𝑞𝑖 = 𝑞 for any 𝑖 , with 0 < 𝑝, 𝑞, 1 − 𝑝 − 𝑞 < 1 to avoid corner
cases. We can interpret this as a generalization of Rank-Biased
Precision (RBP) and we are interested to perform the computation
of the two expectations in the total order ⪯2.

Assuming as before that 𝑔(𝑘,𝑦) = 𝑦 and that 𝑔(0) = 0, while
𝑔(𝑖) = 1 for any 𝑖 ≥ 1 (that includes the classic binary relevance
models), the explicit computation of E1 [

∑𝐻
𝑛=1 𝑟 [𝑋𝑛]] is difficult to

perform and depends on the specific run considered. For example,
taking 𝑁 = 6 and the run 𝑟 = (1, 0, 0, 1, 0, 1), we get

E1 [𝑃@𝐻 ] =
1 − 4𝑝𝑞 + 𝑝3 + 3𝑝2𝑞2 − 𝑝4𝑞 + 𝑝5

1 − 5𝑝𝑞 + 6𝑝2𝑞2 − 𝑝3𝑞3

On the contrary, it is possible to derive the following explicit
expression

E1 [𝐻 ] = 𝐴
√
1 − 4𝑝𝑞
𝑝

+ 2𝑝 − 1 + √
1 − 4𝑝𝑞

2𝑝 (1 − 𝑝 − 𝑞) (3)

where

𝐴 =

(
1

1 − 𝑝 − 𝑞𝑔1 (𝑝, 𝑞, 𝑁 ) − 𝑝

1 − 𝑝 − 𝑞

)
×
(
𝑔2 (𝑝, 𝑞, 𝑁 ) − 𝑔1 (𝑝, 𝑞, 𝑁 )

)−1
,

and

𝑔1 (𝑝, 𝑞, 𝑁 ) =
(
1 − √

1 − 4𝑝𝑞
2𝑝

)𝑁
− 𝑞

(
1 − √

1 − 4𝑝𝑞
2𝑝

)𝑁−1

𝑔2 (𝑝, 𝑞, 𝑁 ) =
(
1 + √

1 − 4𝑝𝑞
2𝑝

)𝑁
− 𝑞

(
1 + √

1 − 4𝑝𝑞
2𝑝

)𝑁−1
.

Denoting E1 [𝐻 ] = 𝐾 (𝑝, 𝑞, 𝑁 ), we get

𝐾 (𝑝, 0, 𝑁 ) = 1 − 𝑝𝑁
1 − 𝑝 .

If we are interested to use this number for a normalization purpose,
the fact that it depends on a possible final “tail” of non relevance
documents could be a potential problem. In the spirit of RBP, it is
therefore possible to substitute this by its limit for 𝑁 that goes to
infinity, which we will denote by 𝐾 (𝑝, 𝑞,∞). A simple computation
gives

𝐾 (𝑝, 𝑞,∞) = 1
1 − 𝑝 − 𝑞

(
2𝑝 − 1 + √

1 − 4𝑝𝑞
2𝑝

)
Note that 𝐾 (𝑝, 0,∞) = (1 − 𝑝)−1.

D DCG AS E[P@H]
Let us interpret

𝐷𝐶𝐺𝑏 (𝑟 ) =
𝑁∑
𝑖=1

𝑤 (𝑟 [𝑖])
max{1, log𝑏 𝑖}

as the expectation of a suitable P@H measure. Consider a FSBM
model where the forward transition probability 𝑝𝑖 is not constant,
and evaluate

E
[ 𝐻∑
𝑚=1

𝑤 (𝑟 [𝑋𝑚])
]
=

𝑁∑
𝑛=1

( 𝑛∑
𝑖=1

𝑤 (𝑟 [𝑖])
)
P[𝐻 = 𝑛]

=

𝑁∑
𝑖=1

( 𝑁∑
𝑛=𝑖

P[𝐻 = 𝑛]
)
𝑤 (𝑟 [𝑖])

Then we have to solve the linear system

1
max{1, log𝑏 𝑖}

=

𝑁∑
𝑛=𝑖

P[𝐻 = 𝑛]

for 𝑖 ∈ {1, . . . , 𝑁 }. Taking for instance 𝑏 = 2, we obtain

1 =
𝑁∑
𝑛=1
P[𝐻 = 𝑛]

which is trivially true; then

1 =
𝑁∑
𝑛=2
P[𝐻 = 𝑛]

which implies that P[𝐻 = 1] = 0,

1
log2 3

=

𝑁∑
𝑛=3
P[𝐻 = 𝑛]

which implies that P[𝐻 = 2] = log2 3−1
log2 3

,

1
log2 𝑖

=

𝑁∑
𝑛=𝑖

P[𝐻 = 𝑛] ,

which implies P[𝐻 = 𝑖] = log2 (𝑖+1)−log2 (𝑖)
log2 (𝑖+1) log2 (𝑖)

, for 𝑖 ∈ {3, . . . , 𝑁 − 1},
and finally

P[𝐻 = 𝑁 ] = 1
log2 𝑁

.

Therefore, leveraging the FSBM model, we obtain that

P[𝐻 = 𝑛] = (1 − 𝑝𝑛)
𝑛−1∏
𝑖=1

𝑝𝑖

for 𝑛 ∈ {1, . . . , 𝑁 − 1}, while

P[𝐻 = 𝑁 ] =
𝑁−1∏
𝑖=1

𝑝𝑖 .

At the end we obtain the following transition probabilities 𝑝1 = 1
and 𝑝𝑖 =

log2 (𝑖)
log2 (𝑖+1)

for 𝑖 ∈ {2, . . . , 𝑁 − 1} which correspond to the



transition matrix:

1 0 0 0 · · · 0 0
0 0 1 0 · · · 0 0

1 − log2 2
log2 3

0 0 log2 2
log2 3

· · · 0 0
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

1 − log2 (𝑁−1)
log2 𝑁

0 0 0 · · · 0 log2 (𝑁−1)
log2 𝑁

1 0 0 0 · · · 0 0
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